(x-5)^2/3=81

Simple and best practice solution for (x-5)^2/3=81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)^2/3=81 equation:


x in (-oo:+oo)

((x-5)^2)/3 = 81 // - 81

((x-5)^2)/3-81 = 0

((x-5)^2)/3+(-81*3)/3 = 0

(x-5)^2-81*3 = 0

x^2-10*x-218 = 0

x^2-10*x-218 = 0

x^2-10*x-218 = 0

DELTA = (-10)^2-(-218*1*4)

DELTA = 972

DELTA > 0

x = (972^(1/2)+10)/(1*2) or x = (10-972^(1/2))/(1*2)

x = (18*3^(1/2)+10)/2 or x = (10-18*3^(1/2))/2

(x-((10-18*3^(1/2))/2))*(x-((18*3^(1/2)+10)/2)) = 0

((x-((10-18*3^(1/2))/2))*(x-((18*3^(1/2)+10)/2)))/3 = 0

((x-((10-18*3^(1/2))/2))*(x-((18*3^(1/2)+10)/2)))/3 = 0 // * 3

(x-((10-18*3^(1/2))/2))*(x-((18*3^(1/2)+10)/2)) = 0

( x-((10-18*3^(1/2))/2) )

x-((10-18*3^(1/2))/2) = 0 // + (10-18*3^(1/2))/2

x = (10-18*3^(1/2))/2

( x-((18*3^(1/2)+10)/2) )

x-((18*3^(1/2)+10)/2) = 0 // + (18*3^(1/2)+10)/2

x = (18*3^(1/2)+10)/2

x in { (10-18*3^(1/2))/2, (18*3^(1/2)+10)/2 }

See similar equations:

| 1+3x=5+6x | | 1x+6=8 | | M+1-6m= | | (7t-2)-(-3t+1)=-3(1-2t) | | 5x+-10=-10 | | -2x^3-14x^2-12x=0 | | 14/5=7/2n | | 420=p-36 | | 4cot(x)+1=-3 | | e^3y-4=8 | | -5c+5c-6= | | 50=-2(x-10) | | 3.2x^2(7.2x^1y^2-0.7x^2y^6)= | | 0=-8x-8 | | -5x+-20=-10 | | (8-x)/6 | | 5x+-20=-10 | | 5(10+x)=5 | | log(4)(2x)=log(4)(35-x^2) | | 5xz^5(-8x^3z^2)(z^8)= | | 3+7+5x=8+2+10x | | -5x+-20=10 | | 3c+2c-5= | | 7x/5-=83 | | 9c-12=12 | | 1.2X+3.8=0.5x+0.86 | | 8cos^2(x)+10cosx+3=0 | | 10y^3+3y^2-18y=0 | | 2(9+5x)=88 | | 4(5x-4)+5=18x-3 | | -2+(-5)=x | | 1.5x^2+2=0 |

Equations solver categories